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In this paper we study the interaction of a shock with an axisymmetric longitudinal
vortex. A linearized analysis for small vortex strength is performed, and compared
with results from a high-order axisymmetric shock-fitted Euler solution. It is con-
firmed that for weak vortices, predictions from linear theory agree well with results
from nonlinear numerical simulations at the shock location. To handle very strong
longitudinal vortices, which may ultimately break the shock, we use an axisymmetric
high-order essentially non-oscillatory (ENO) shock-capturing scheme. Comparisons
of shock-captured and shock-fitted results are performed in their regions of common
validity. We also study the vortex breakdown as a function of Mach number ranging
from 1.3 to 10, thus extending the range of existing results. For vortex strengths
above a critical value, a triple point forms on the shock, leading to a Mach disk.
This leads to a strong recirculating region downstream of the shock and a secondary
shock forms to provide the necessary deceleration so that the fluid velocity can adjust
to downstream subsonic conditions.

1. Introduction
Over the last 15 years, there have been numerous experimental (Dosanjh & Weeks

1965; Naumann & Hermans 1973; Délery et al. 1984; Cattafesta & Settles 1992;
Cattafesta 1992), theoretical (Ribner 1954; Chang 1957), and computational (Pao
& Salas 1981; Zang, Hussaini & Bushnell 1984; Kopriva 1988; Lasseigne, Jackson
& Hussaini 1991; Meadows, Kumar & Hussaini 1991; Ellzey et al. 1995; Meadows
1995; Rizetta 1995; Erlebacher, Hussaini & Jackson 1996) studies of the shock–vortex
interaction problem. Major effort has been devoted to investigating the interaction
of a shock with either plane waves (Ribner 1954, 1986; McKenzie & Westphal
1968; Chang 1957; Erlebacher et al. 1996; Lasseigne et al. 1991) or with a vortex
whose axis is aligned with the shock (Naumann & Hermans 1973; Ellzey et al. 1995;
Erlebacher et al. 1996; Pao & Salas 1981; Zang et al. 1984). In these studies, the
main interest was to understand the shock distortion, the vorticity amplification
mechanisms engendered by the shock, and the properties of the radiated noise. The
observations of the experiments (Naumann & Hermans 1973; Délery et al. 1984;
Dosanjh & Weeks 1965; Cattafesta 1992) have been in general substantiated by
the theoretical work of Ribner (1954, 1986), based on linear theory. Numerical
simulations have recently begun to quantify some of the experimental results, in both
the linear and nonlinear regimes (Meadows et al. 1991; Ellzey et al. 1995; Meadows
1995; Erlebacher et al. 1996).

The configuration in which the vortex has its axis normal to the shock occurs in
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practice, for example, when a wing tip vortex shed from a canard of a supersonic
fighter plane intersects the shock that lies over the wing. The resulting deceleration
of the vortex can lead to vortex breakdown (if the vortex and shock strengths are
appropriate), resulting in destabilizing forces on the airplane (Délery et al. 1984).
Thus, a theoretical, or heuristic determination of the conditions under which this
breakdown occurs is of practical interest for both the design of fighter planes, and
for the problem of controlling the resultant destabilizing forces.

There have been only a handful of experiments concerned with the longitudinal vor-
tex/shock interaction (Cattafesta & Settles 1992; Cattafesta 1992; Délery et al. 1984).
In these cases, particular care was taken to ensure that the vortex was axisym-
metric, and that it interacted with a planar normal shock. The experiments dif-
fered in the shock creation process. For example, Cattafesta & Settles (1992) and
Délery et al. (1984) created a shock using a two-dimensional Pitot type air intake
mounted in a section of uniform flow. Cattafesta & Settles (1992) also created a
normal shock wave by over-expanding the exit flow from a supersonic nozzle. The
associated numerical simulations were able to reproduce the gross features of the
experimental results.

To enhance our understanding of the shock-induced vortex breakdown phenomena,
we study the case of a shock of infinite extent interacting with a longitudinal vortex.
We find that the flow is not always steady. However, for moderately weak vortices,
a steady state appears possible. The vortex breakdown is known to be a function
of the helix angle which is defined as the arctangent of the ratio of the maximum
azimuthal velocity and the mean axial velocity. In the incompressible case, it is
observed that once the helix angle attains the critical value of 57◦, the vortex is prone
to breakdown (Délery et al. 1984; Spall, Gatski & Grosch 1987). The critical helix
angle is lower for compressible flows. In the presence of a shock, the critical value
of the helix angle decreases further due to the higher flow deceleration. It is attained
more easily for stronger vortices and higher shock Mach numbers (Cattafesta 1992;
Délery et al. 1984). If the vortex circulation is further increased, strong nonlinear
effects come into play. The pressure associated with the vortex core, which scales
quadratically with circulation, leads to nonlinear effects responsible for the formation
of a Mach disk along with a strong downstream recirculating zone with a complex
structure. Nonlinear effects are directly related to the product of vortex strength and
shock Mach number. This is the direct result of a linear scaling of vortex strength
with circulation, and a quadratic scaling of the maximum pressure variation within
the vortex core.

The paper is organized as follows: §2 contains the mathematical formulation of the
problem. Section 3 describes both the shock-fitted (S-F) compact difference scheme
and the shock-capturing essentially non-oscillatory (ENO) method. Section 4 provides
details of the linear analysis, including a simplified high-Mach-number expansion of
the Rankine–Hugoniot conditions. Section 5.1 presents the consistency checks of both
numerical algorithms against linear theory and against each other. In §5.2 and §5.3,
we study the influence of the variation in vortex strength and shock Mach number
on vortex breakdown and shock bifurcation. We first compute the vortex breakdown
curve as a function of shock Mach number ranging from 1.3 to 10. Then, in §5.3,
we consider vortex strengths leading to the formation of a Mach disk and strong
recirculating zones downstream of the shock. Unsteady effects and the influence of
initial conditions are also addressed in this section. Some concluding remarks are
made in the final section.
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Figure 1. Geometry.

2. Problem formulation
We seek to study the interaction of a longitudinal vortex with a plane shock of

infinite radial extent. For simplicity, the vortex is assumed to be axisymmetric with
its axis perpendicular to the shock. The geometry is shown in figure 1.

The flow is assumed to be governed by the axisymmetric compressible Euler
equations (in conservation form):

∂ρ

∂t
+
∂(ρux)
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+
ρur

r
= 0,

∂(ρux)

∂t
+
∂(ρu2

x + p)

∂x
+
∂(ρuxur)

∂r
+
ρuxur

r
= 0,

∂(ρur)

∂t
+
∂(ρurux)

∂x
+
∂(ρu2

r + p)

∂r
+
ρ(u2

r − u2
θ)

r
= 0,

∂(ρuθ)

∂t
+
∂(ρuθux)

∂x
+
∂(ρuθur)

∂r
+

2ρuθur
r

= 0,

∂E

∂t
+
∂(ux(E + p))

∂x
+
∂(ur(E + p))
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(2.1)

where ρ is the density, (ux, ur, uθ) are the velocity components in the axial, radial, and
azimuthal directions, and E is the total energy,

E =
p

γ − 1
+ 1

2
ρ(u2

x + u2
r + u2

θ), (2.2)

with the ratio of specific heats γ = 1.4 for air. The pressure, density, and temperature
are non-dimensionalized with respect to their mean upstream values P1, ρ1, and T1

respectively and are related by the ideal gas law

p = ρT . (2.3)

The velocity is scaled by the reference velocity c∗ = T1
1/2, related to the upstream

mean sound speed c1 = γ1/2c∗. In the frame of reference in which the mean shock
is stationary, the mean upstream Mach number is therefore M1 = |U1|/γ1/2, where
M1 is the upstream Mach number in a frame of reference in which the mean
shock is stationary. Note that the chosen non-dimensionalization leaves the Euler
equations (2.1) invariant. Finally, lengths are scaled by the vortex core radius r0, and
time is scaled by r0/c

∗
1.

The shock is initially located at the x = 0 plane; the axial extent of the upstream
domain extends to x = b, while the leftmost boundary on the downstream side is
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located at x = a. The flow is from right to left so that a < 0, and b > 0. The axis of
symmetry is r = 0, and the radial coordinate extends to r = c, where c is sufficiently
large that all flow disturbances effectively vanish at this free-stream boundary.

At t = 0, we choose a mean flow consistent with a stationary shock at x = 0.
Upstream of the shock (x > 0)

ρ = 1, ux = U1 = −γ1/2M1, ur = uθ = 0, p = P1 = 1, (2.4)

while the downstream mean solution is (x < 0)

ρ =
(γ + 1)M2

1

(γ − 1)M2
1 + 2

, ux = U2 = −γ
1/2((γ − 1)M2

1 + 2)

(γ + 1)M1

,

ur = uθ = 0, p = P2 =
2γM2

1 − (γ − 1)

γ + 1
.

 (2.5)

Next, we superimpose on the mean flow an isentropic vortex with its axis along
r = 0. Analytical forms of such vortices which are steady-state solutions of the Euler
equations exist with arbitrary radial profiles. We choose an exponentially decaying
profile to reduce interactions of the vortex with the outer domain boundary in the
radial direction. The perturbations of azimuthal velocity u′θ and temperature T ′

associated with the vortex are given by

u′θ =
ε r

2π
e0.5(1−r2) T ′ = − (γ − 1)ε2

8γπ2r2
0

e1−r2

, (2.6)

where r0 is the vortex core radius and ε is a non-dimensional circulation at r = 1,
related to the dimensional circulation Γ by

ε =
Γ

r0c∗
. (2.7)

The axial and radial velocities u′x, u
′
r are zero, the perturbation entropy S ′ = log(p/ργ)

is constant inside the vortex, and u′θ is maximum at r = 1. Because of the particular
radial profile of u′θ , the vortex circulation decays exponentially fast to zero as r →∞.
Another measure of the relative strength of the vortex is given by the ratio of the
maximum u′θ to U1. This quantity, denoted by τ, measures the inclination of the
streamlines with respect to the symmetry axis of the vortex (Délery et al. 1984). It is
also the tangent of the helix angle. The relationship between ε and τ is

τ =
ε

2πM1γ1/2
. (2.8)

The upstream vortex defined by (2.6) has the following features:
(i) it is a steady-state solution of the Euler equation (2.1) if ux = 0, otherwise it

is passively convected by the flow with constant velocity U1;
(ii) it has constant entropy;
(iii) there is no singularity at the symmetry axis;
(iv) it decays exponentially fast as r →∞, thus ensuring that free-stream boundary

effects are virtually absent. In fact, in most calculations we set the computational
boundary at r = 5, at which the relative effect of the perturbation on the pressure
and density is of the order of 10−10.

Previous studies (Cattafesta 1992; Délery et al. 1984) have indicated that for low
and moderate vortex strengths, a steady state is eventually reached. However, the
shocks in these simulations were kept stationary by either placing the shock in a
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divergent nozzle (Délery et al. 1984), or by attaching a Mach disk at the end of
an underexpanded jet (Cattafesta 1992). Such artifacts accelerate convergence to a
steady state. Should a steady state exist, one often assumes that the final state is
independent of initial conditions. For example, Délery et al. (1984) assume that the
total enthalpy is independent of time. They therefore simplify their calculations by
building this constraint into the equations of motion. However, this precludes even
genuinely unsteady solutions. In contrast, we do not presume that steady solutions
exist. Instead, we use high-order time-dependent numerical algorithms to compute
the solution which are sometimes unsteady.

To lessen possible transients during the initial stages of the simulation, we multiply
the initial conditions by a function s(x). We have considered three different functions:

IC-a

s(x) = 1.0, (2.9)

IC-b

s(x) =

{
0, x 6 0
1, x > 0,

(2.10)

IC-c

s(x) =


0, x < α

1−
(

1−
(
x− α
β − α

)3
)3

, α 6 x 6 β

1, x > β.

(2.11)

In case IC-a, the vortex structure (defined by u′θ and T ′) is independent of the axial
location and exists across both upstream and downstream domains. A shock is then
externally generated along x = 0 at t = 0. The initial conditions satisfy the steady-
state Euler equations, but the pressure and density jumps across the initial shock do
not satisfy the steady Rankine–Hugoniot conditions (which then cause the shock to
adjust itself). In case IC-b, the vortex is only defined in the upstream domain and
abruptly ends at the shock, which offers a clean model configuration. Finally, case
IC-c is intermediate between the first two cases. The transition function smoothly
varies from zero to one and is only non-zero in the upstream domain. Thus, the
Rankine–Hugoniot conditions are initially satisfied, but the upstream modified vortex
is no longer a solution to the steady-state Euler equations. Note that IC-b is a special
case of IC-c where α→ 0, β → 0. Numerical simulations presented in a later section
will show that IC-b and IC-c actually produce similar transient structures, albeit
shifted in time.

The boundary conditions are chosen as follows. We prescribe all variables at
the supersonic inflow on the upstream side (x = b). At the subsonic downstream
boundary, we employ the characteristic boundary conditions for the ENO method,
or a buffer domain technique for the S-F method. The details of the buffer domain
are discussed in §3. The free-stream boundary (r = c) is sufficiently removed from
the vortex so that a simple Neumann boundary condition is sufficient for the ENO
algorithm. The S-F algorithm permits a choice between characteristic conditions and
Dirichlet boundary conditions (i.e. zero perturbation) in the free-stream. They both
give similar results because the boundaries are sufficiently far from the vortex axis
that the perturbations do not reach it during the numerical simulation. Naturally, we
impose symmetry conditions at r = 0. Radial derivatives of all variables are set to
zero, except for the azimuthal and radial velocities which vanish.
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3. Numerical methods

We adopt two numerical algorithms of high-order accuracy to solve the unsteady
axisymmetric compressible Euler equations for the shock/vortex interaction problem:
(i) a shock-fitted (S-F) algorithm and (ii) an essentially non-oscillatory (ENO) al-
gorithm which captures the shock. The former is based on a sixth-order compact
scheme and has the advantage of precluding Gibb’s phenomena associated with shock
capturing; however, its disadvantage is that it cannot handle very weak shocks or
situations of strong shocks with triple points. The latter is based on adaptive stencil
interpolation and nonlinearly stable time discretization, which ensures formally third-
order accuracy in the smooth part of the solution while maintaining sharp essentially
non-oscillatory shock transitions.

3.1. Shock-fitting method

The shock-fitted code solves the Euler equation in the non-conservation form

∂u

∂t
= −T∇P− u · ∇u = Ru, (3.1)

∂P
∂t

= −γ∇ · u− u ·P = RP, (3.2)

∂s

∂t
= −u · ∇s, (3.3)

where s = P− γ log ρ is the entropy and P = log p is the logarithmic pressure. The
functions Ru and RP are the residuals of the momentum and pressure equations.

After mapping of the downstream physical domain to the computational space
X ∈ [0, 1], Y ∈ [0, 1], the downstream exit becomes X = 0, the shock is X = 1, Y = 0
is the symmetry axis and Y = 1 is the free-stream boundary. All spatial derivatives are
computed in computational space with a compact sixth-order discretization scheme
which is stable for Dirichlet boundary conditions. Both x- and r-coordinate directions
are non-periodic. Derivatives at the first and second points at both ends of the
computational domain are explicitly defined by

hu′0 =

7∑
i=0

ai ui , hu′1 =

7∑
i=0

bi ui ,

where the parameters ai and bi are given by

ai =

{
−296

105
,
415

48
,−125

8
,
985

48
,−215

12
,
791

80
,−25

8
,
145

336

}
, (3.4)

bi =

{
− 3

16
,−211

180
,
109

48
,−35

24
,
115

144
,−1

3
,

23

240
,− 1

72

}
, (3.5)

and h is the uniform grid spacing in computational space. Identical explicit formulae
are derived for u′N and u′N−1, where N is the number of grid points along the non-
periodic direction. This stencil is commonly referred to as 52 − 6 − 52. Alternative
boundary stencils are given in Carpenter, Gottlieb & Abarbanel (1993). The deriva-
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tives at interior nodes (i = 1, · · · , N − 1) are computed via the standard scheme (Lele
1992)

1∑
j=−1

αju
′
i+j = h−1

2∑
j=−2

βjui+j (3.6)

with coefficients α±1 = 1, α0 = 3, β±2 = 1/12, β±1 = 7/3 and β0 = 0.
To maintain the sixth-order accuracy of derivatives in the radial direction at the

axis, we build the required symmetry properties into the matrix derivative operator.
This requires modifying the formulae for the first two radial points which are now
solved as part of the implicit system. Let uj be the value of any variable at the jth
radial point, with j = 0 corresponding to the symmetry axis. Symmetry conditions
imply that u−j = uj , while antisymmetric conditions imply u−j = −uj . Combining
these requirements with the interior formula 3.6, we obtain for the point on the axis
under symmetric conditions, α0 = 3, α1 = 0, βi = 0. The first point off the axis has
β2 = −β0 = 7/3, β3 = −β1 = 1/12, while the α take the interior values for the first
point off the axis. The requirement of antisymmetry leads to α0 = 3, α1 = 2, β0 = 0,
β1 = 14/3, β2 = 1/6, β3 = 0 for the axis point, while β1 = −β−1 = 7/3, β0 = β2 =
1/12, and once again, the α take the interior values for the first point off the axis.

The symmetry axis is a geometric singularity, and requires special treatment. Being
interior to the physical domain, the flow variables at the axis satisfy the equations of
motion. Singular terms at the axis are evaluated using L’Hospital’s rule. For example,
ur/r is replaced by ∂ur/∂r.

The grid is stretched in the radial direction according to

r = r0

(
sinh (Y − Y0)β

sinh βY0

+ 1

)
, (3.7)

where

Y0 =
1

2A
log

1 + (eA − 1)(r0/rmax)

1 + (e−A − 1)(r0/rmax)
(3.8)

and 0 < Y < 1 is the computational coordinate in the radial direction. This choice
of stretching allows the grid points to concentrate around r = 1 and extend to a
maximum radius of rmax; the stretching of the grid is controlled by the parameter A.
As detailed in Erlebacher et al. (1996) we transform the downstream physical axial
coordinate x using the coordinate transformation

X =
x− a

xs(r, t)− a
(3.9)

where xs(r, t) is the shock shape and x = a is the leftmost boundary of the downstream
domain.

At the downstream boundary, we implement the buffer domain technique intro-
duced by Ta’assan & Nark (1995). We modify the downstream Euler equations
in a finite buffer domain abutting the downstream boundary, replacing ∂/∂t by
∂/∂t + U0(X)∇, to control the direction of the characteristics and the characteristic
speeds. At the exit plane, X = 0, the characteristic speeds become u2(b) + U0(b),
U0(b) + U0(b) ± c2(b). The axial profile for U0(x) is a power function of degree 2.
Subscripts 1 and 2 refer to upstream and downstream variables respectively.

We briefly present the derivation of a time evolution equation for the shock motion
(Hussaini et al. 1985; Canuto et al. 1987; Kopriva, Zang & Hussaini 1991). Given
the shock shape, x = xs(r, t), and the Euler equations, the characteristic normal to the
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shock pointing in the upstream direction has the form

(p,t − Rp) + ζ n · (u,t − Ru) = 0 (3.10)

where ζ = (γ/T2)
1/2

is a function of the downstream temperature and density, and n
is the unit normal to the shock pointing in the upstream direction:

n =

(
1

1 + x2
s,r

1/2
,
−xs,r

1 + x2
s,r

1/2

)
. (3.11)

Ru and Rp are numerically computed as part of the Runga–Kutta advancement.
To apply (3.10) at the shock requires the time derivatives of pressure and velocity.
These are obtained by solving the Rankine–Hugoniot conditions for the downstream
pressure p2 and velocity u2:

p2 =
2

γ + 1

(
γ − 1

2
p1 + ρ1δ

2
1

)
, δ2 =

γ − 1

γ + 1
δ1 +

2γ

γ + 1

p1

ρ1δ1

, (3.12)

and differentiating (p2, δ2) with respect to time. Here, δi = ui · n−us, where us = wsx̂ · n
is the shock velocity normal to the shock, while x̂ and ws = xs,t are the unit vector
and the instantaneous shock velocity respectively. The required time derivatives are
readily computed and inserted into the characteristic equation above to obtain the
final evolution equation

(nxws),t =
(F − ζA)(n · u1),t + ζ (u2 · n,t) + (D − ζB) p1,t + (E − δC) ρ1,t −R

F + ζ(1− A)
, (3.13)

where

R = Rp − ζ n,t ·Ru (3.14)

and the constants A, F , D, B, E, C are functions of the upstream flow variables and
the shock velocity.

Time advancement is based on a low-storage, five-stage fourth-order-accurate
Runga–Kutta scheme (Carpenter & Kennedy 1994). Although 5/3 more expensive
than Williamson’s third-order low-storage scheme at fixed CFL, the achievable CFL
is higher by a factor of 1.9, which is greater than 5/3, so with no change in memory
requirement there is a net gain of CPU time, along with the increased accuracy. The
interior equations and shock motion equations are advanced simultaneously in time.
The Rankine–Hugoniot conditions are applied at the end of each Runga–Kutta stage
to update the downstream variables at the shock.

3.2. Shock-capturing method

The shock-capturing method we use in this work belongs to the class of high-order
nonlinearly stable essentially non-oscillatory (ENO) methods developed by Shu &
Osher (1988, 1989), and Shu et al. (1992). The detailed description of the algorithm,
along with information on efficient implementation can be found in these references.
Here we only highlight a few key points and describe issues which relate to the
applications of ENO schemes to the particular system of equations 2.1.

The main idea underlying an ENO scheme lies at the approximation (interpolation)
level. For piecewise smooth functions and a fixed stencil, high-order interpolation
schemes inevitably cross the discontinuities, causing not only loss of accuracy but
also over- and under-shoots (Gibbs phenomenon). ENO (Harten et al. 1987) is an
adaptive stencil interpolation, with the local stencil chosen as the smoothest possible
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among all candidates. This, together with upwinding (realized through flux splitting),
characteristic decomposition (which effectively decouples the system locally) and a
nonlinearly stable time discretization, ensures that the scheme achieves high-order
resolution in the smooth part of the solution while maintaining sharp, non-oscillatory
shock transitions. For the shock–vortex interaction problem considered in this paper,
which contains both strong shocks and complex structures in the smooth part of
the solution, a high-order ENO scheme is an ideal candidate. We use the uniformly
third-order ENO scheme (fourth-order in L1), based on a Lax–Friedrichs building
block, and a third-order total-variation-diminishing Runge–Kutta time discretization
(Shu et al. 1992).

The procedure underlying ENO schemes is best described with reference to the
one-dimensional scalar version of (2.1):

∂u

∂t
+
∂f(u)

∂x
= 0, (3.15)

followed by an indication of how it can be generalized to solve the full system 2.1. The
spatial derivative in 3.15 is discretized by the conservation difference approximation

∂f(u)

∂x
≈ 1

∆x

(
f̂j+1/2 − f̂j−1/2

)
. (3.16)

A linear combination of the point values of the flux function f(u),

f̂j+1/2 =

k1+r+1∑
k=k1

c(k1, k)f(uj+k), (3.17)

is used to represent the numerical flux. Here, r is the order of accuracy in L∞ (i.e. the
scheme is (r + 1)th-order L1), c is a constant matrix independent of f(u) computed
only once and stored, and the leftmost point location k1 is decided locally by the ENO
interpolation procedure (the precise formulae and the exact procedure are detailed in
Shu et al. 1992). Upwinding is used in this stencil choosing process.

With an explict ENO scheme, a multi-dimensional scalar equation is handled di-
mension by dimension. Each derivative is treated as one-dimensional in computational
space, and the above algorithm is applied. For a system of multidimensional equations,
a local characteristic decomposition is first performed to transform the equations into
a decoupled set of multidimensional scalar equations whose unknowns are the Rie-
mann invariants of the original system of equations (Shu et al. 1992). Derivatives of
the Riemann invariants are computed according to the one-dimensional algorithm.

The ENO scheme treats the symmetry axis differently from the compact scheme
algorithm. The point-value ENO procedure stores solution variables at the cell centres
and computes fluxes at cell edges. The axis r = 0 is placed at a cell edge rather than
at a cell centre. Therefore, the computational domain is extended to the other side of
the axis and uses ghost points. Symmetry conditions are imposed on all the variables
at the end of each iteration at the ghost points, except for the radial and tangential
velocities which are antisymmetric about r = 0.

4. Linear analysis
This section examines the linearized Euler and Rankine–Hugoniot (R-H) conditions

with a view to obtaining some analytical and physical insight into the behaviour of
the flow. Consider a shock normal to the mean flow and label the upstream and
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downstream sides by subscripts 1 and 2, respectively. From the steady-state R-H
conditions, one readily deduces the relations

M2
2 =

2 +M2
1 (γ − 1)

2γM2
1 − (γ − 1)

,

ρ21 =
ρ2

ρ1

=
(γ + 1)M2

1

2 +M2
1 (γ − 1)

,

P2

P1

=
2γM2

1 − (γ − 1)

γ + 1


(4.1)

between mean upstream and downstream variables.
Now consider an infinitesimal perturbation wave (denoted by primes) superimposed

on the mean flow, but not necessarily aligned with it. These perturbation velocities are
decomposed normal and parallel to the mean shock position. This in turn induces a
perturbation in the shock position and orientation. Together with an assumed shock
shape given by

x = xs(r, t), (4.2)

and the introduction of a finite shock velocity into the R-H conditions, their lineariza-
tion with respect to perturbation amplitude leads to a linear system of equations for
the downstream variables. For simplicity, we set the upstream axial and radial pertur-
bation velocity components, and the upstream perturbation entropy, to zero. Solving
the linearized R-H conditions for the downstream perturbation variables yields

s′2
γ

= Λ12

p′1
γP1

+Π1

xs,t

c1

, (4.3)

p′2
γP2

= Λ22

p′1
γP1

+Π2

xs,t

c1

, (4.4)

u′x2

c2

= Λ32

p′1
γP1

+Π3

xs,t

c1

, (4.5)

u′r2
c2

= Π4xs,r. (4.6)

Here, s′2 = p′2/P2 − γρ′2/ρ2 is the downstream perturbation entropy.
The nomenclature for the matrix coefficients is taken from Chang (1957) where the

general solution for arbitrary upstream disturbances was derived. With the previous
definitions, the matrix coefficients are

Λ12 = +
M2

2

1−M2
2

{
(1− ρ21)[1 + (γ − 1)M2

2 ] +

[
1− ρ2

21

(
M2

M1

)2
]}

< 0, (4.7a)

Λ22 = − M2
2

1−M2
2

{
(1− ρ21) + (1− ρ21

M2
1

)[1 + (γ − 1)(1− ρ21)M
2
2 ]

}
> 0, (4.7b)

Λ32 =
M2

2

M1(1−M2
2 )

(1− ρ21){2 + (γ − 1)(1− ρ21)M
2
2} < 0, (4.7c)

Π1 = (γ − 1)
(1− ρ21)

2

ρ21

M2 > 0, (4.7d)
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Π2 = − M2

1−M2
2

1− ρ21

ρ21

[2 + (γ − 1)(1− ρ21)M
2
2 ] > 0, (4.7e)

Π3 = − 1

1−M2
2

1− ρ21

ρ21

[1 +M2
2 + (γ − 1)(1− ρ21)M

2
2 ] > 0, (4.7f)

Π4 = −M2(ρ21 − 1) < 0. (4.7g)

The inequalities in the expressions above hold for the range of upstream Mach
numbers M1 > 1. Several conclusions can be drawn from (4.3)–(4.6). First, note that
u′θ is continuous across the shock, and is therefore absent from the linearized R-H
relations. Second, u′r2 has the same radial profile as the shock slope xs,r(r, t). If the
shock moves in the positive x-direction, then xs,t > 0. In addition, if the shock velocity
decreases away from the axis, then xs,r < 0, which implies that u′r2 > 0. The sign of
u′x2 is also positive since p′1 < 0 in the upstream vortex core. Thus, if the shock is
displaced in the upstream direction, its velocity is positive at the axis, and a counter-
clockwise (in region r > 0) downstream vortex ring is generated. This vortex ring
then convects downstream with the mean axial velocity U2, while new vortex rings
are continuously generated by the steady upstream. The final result is a perturbation
velocity u′x2 pointing upstream at the axis, and pointing downstream at the top of
the vortex ring. Superimposed on this ring of azimuthal vorticity is a downstream
axial vortex characterized by the same azimuthal velocity distribution as upstream
(to leading order), but with a lower relative (with respect to the downstream mean
pressure) pressure variation within the vortex (0.67 < Λ22 < 0.72, for 1 < M1 < ∞).
As expected, the signs of Λ12 and Π1 are consistent with positive entropy generation
across the shock.

5. Discussion of physical results
In this section, results from the S-F and ENO algorithms, as applied to the problem

of shock/vortex interaction, are compared to the predictions of linear theory and to
each other. Because of the low-order accuracy of ENO results in the vicinity of the
shock, detailed verification of shock-related information is rather difficult. However,
it is possible to verify results of the ENO scheme in the downstream region away
from the shock where pointwise or integrated quantities can be checked. Therefore,
after providing a mutual verification of the S-F method and linear theory in the
linear regime, we use the S-F results to establish the limitations of linear theory. Then
we use the S-F results to validate the ENO results for moderately strong vortices,
especially with reference to the structure of the flow away from the shock. Finally we
venture with the ENO scheme into the highly nonlinear regime of stronger vortices,
which cannot be handled by the S-F method.

5.1. Linear regime

The validity and accuracy of the S-F algorithm have been verified in numerous
situations involving plane acoustic, shear or entropy waves (Zang et al. 1984; Las-
seigne et al. 1991). We consider specifically axial vortices 2.6 with strengths in the
range ε ∈ [10−3, 3] interacting with a Mach 2 shock. After the downstream solution
computed by the S-F method has evolved for a fixed period of time, the downstream
values of field and thermodynamic variables at the shock are compared to the cor-
responding predicted values obtained from the linear equations (4.3)–(4.6) using the
upstream values and the computed shock speed at the particular instance in time.

We compute the error (both absolute (a.e.) and relative (r.e.)) for entropy, pressure
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ε 1 0.1 0.01 0.001

τ 0.067 0.0067 0.00067 0.000067
S (a.e.) 5.8× 10−5 5.8× 10−9 9.1× 10−13 2.1× 10−14

S (r.e.) 2.4× 10−2 2.4× 10−4 3.7× 10−6 8.5× 10−6

p (a.e.) 5.3× 10−4 5.1× 10−8 2.7× 10−12 7.8× 10−14

p (r.e.) 4.9× 10−3 4.6× 10−5 2.5× 10−7 7.0× 10−7

un (a.e.) 6.0× 10−5 6.1× 10−9 9.1× 10−13 3.1× 10−15

un (r.e.) 1.3× 10−2 1.4× 10−4 2.1× 10−6 7.2× 10−7

Table 1. Error of downstream variables at the shock between S-F and linear theory. Error is
computed on the symmetry axis. Both absolute (a.e.) and relative errors (r.e.) are shown.

ε 3 2 1 0.1
τ 0.2018 0.1345 0.06726 0.006726

Entropy S 24.05% 9.95% 2.37% 0.024%
Pressure p 4.38% 1.90% 0.49% 0.005%
Velocity un 13.17% 5.69% 1.33% 0.014%

Table 2. Relative error of downstream variables at the shock between S-F and linear theory.
Error is computed on the symmetry axis.

and velocity normal to the shock. A grid resolution of 50 × 150 and a downstream
domain x ∈ [1, π] ensured that the numerical errors did not contaminate the measured
errors. Results at the symmetry axis (where the maximum error is found to occur) are
presented in tables 1 and 2. As expected, the linear theory prediction is found to be
accurate and match the S-F results in the range of vortex strength ε < 1 (τ < 0.067).

Since the perturbation p′1 = O(ε2), u′1x = 0, and u′θ is continuous across the shock,
it follows that all downstream perturbation variables are O(ε2). The absence of O(ε)
terms implies that the absolute error is O(ε4) in the linear regime, and the relative
error is O(ε2). These results are clearly confirmed in table 1, except for simulations
where absolute errors reach the roundoff error of the computer (< 10−13).

As evidenced by the results from table 2, nonlinear effects become significant
(relative errors greater than 1%) when εM1 > O(1). Note that for ε = 3 (τ = 0.2)
the relative error between the linear theory prediction and the S-F computation is
already 24% for entropy, suggesting strong nonlinear effects. The data also suggest
that pressure is less affected by high ε than are entropy and normal velocity. Results
in table 2 also suggest that for ε = 2 and beyond, cubic nonlinearities seem to come
into play because the relative error is growing slightly faster than quadratically with
the vortex strength. Note that at M1 = 2, flow reversal occurs at ε ≈ 3.7 which
is beyond the nonlinear threshold (see §5.2). In all the cases considered, the linear
results underestimate the magnitude of the nonlinearly computed perturbations of s′2,
p′2, and u′2x.

After the successful comparison between linear theory and S-F results, we compute
the shock/vortex interaction with ENO and S-F schemes and compare the solutions
in the downstream domain when M1 = 2 and ε = 2. We initialize the vortex according
to IC-c (2.11) with α = 2, and β = 6. The shock is initially located at x = 0. For the
S-F simulation, the upstream domain extends to x = 8, and the downstream domain
extends to x = −10, with the buffer domain starting at x = −9. Parallel to the shock,
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Figure 2. Superposition of ENO and S-F in the region x ∈ [−5, 0], r ∈ [0, 3]. Contour levels of ux
range from −0.9 to −0.6 by increments of 0.1. Solid lines: S-F; dashed lines: ENO with 200× 100
resolution; dotted lines: ENO with 100× 50 resolution.
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Figure 3. Cut of figure 2 at r = 0 and r = 1.

the grid stretching parameters are A = 2.5, rmax = 20 (see (3.8)). In computational
space, the grid is uniform in both upstream and downstream domains, but with
different grid spacings in the two domains. There are 60 axial grid points in the
upstream domain. Coarse (100 × 48) and fine (200 × 96) downstream grids produce
almost identical contour plots of u′x, indicating a reasonably converged solution.

Conditions for the ENO scheme are as follows. The physical domain is defined by
the region x ∈ [−10, 8] and r ∈ [0, 5], with a uniform grid in both directions. Coarse
and fine resolution grid densities are 100× 50 and 200× 100, respectively. Although
the results from the two algorithms were compared at various times, we present only
the results at t = 6.

Figure 2 compares contour plots of axial velocity obtained from ENO and S-F
in the region x ∈ [−5,−1] and r ∈ [0, 3]. There are four equally spaced contour
levels ranging from −0.9 to −0.6, with a maximum of −0.53 near x = −3.0. With
a free-stream velocity U2 = −0.887, the flow has not yet reversed. (The flow in
the downstream domain is defined to have suffered reversal, i.e. incipient vortex
breakdown, if the axial velocity points upstream at least at one point.) According to
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table 3, the circulation must approach the value 4 for breakdown to take place. The
solid line represents the S-F results which may be considered as converged solutions.
As expected, the ENO solution approaches the S-F solution as the grid is refined.
When the axial grid resolution is doubled, the ENO contours lie approximately half
way between the S-F contours and the ENO contours with a coarser grid. Cuts
through the contours of figure 2 at r = 0 and r = 1 are shown in figure 3 to quantify
the differences between the solutions. The refined ENO solution is approximately half
way between the coarse ENO and SF. This is consistent with a first-order-accurate
solution. As explained by Casper & Carpenter (1996), the first-order accuracy is
the result of the propagation of the first-order error near the shock through the
downstream characteristics.

5.2. Vortex breakdown regime

The comparisons performed in the previous subsection demonstrate that linear theory
accurately predicts the phenomena associated with the interaction of a shock wave
with an axial vortex for the range of vortex circulations ε and shock Mach numbers
M1 such that εM1 < O(1). As the vortex strength is increased beyond this linear
limit, the deceleration of the axial flow across the shock increases the likelihood of
the vortex breaking down. This is best understood by considering the angle formed
by the streamlines and the symmetry axis (referred to in the Introduction as the helix
angle),

Θ = arctan τ = arctan
uθmax

u∞
, (5.1)

where u∞ is the free-stream axial velocity. This equation shows that Θ increases
if either u∞ decreases (stronger shock), or uθmax increases (stronger vortex). In the
case of the incompressible axisymmetric vortex, it is known that breakdown is highly
probable when Θ reaches a critical value around 57◦ (Spall et al. 1987). Experiments
(Cattafesta 1992; Délery et al. 1984), and numerical simulations (Délery et al. 1984)
indicate that the vortex strength τ required to induce flow reversal downstream of
the shock decreases with increasing Mach number. We are interested in reproducing
these results with an accurate time-dependent simulation. Previous investigations
assumed constant enthalpy for reasons of efficiency, thus assuming the existence of a
steady-state solution (Délery et al. 1984).

Although both ENO and S-F are adequate to trace out the envelope of incipient
breakdown, we opted to use ENO for expediency. Spot checks at M1 = 2 and M1 = 5
with S-F confirm the ENO results. The initial conditions used for this were IC-b.

The computational domain for ENO is x ∈ [−4, 2], r ∈ [0, 5], with a uniform grid
of 100× 75 points. A uniform axial vortex is placed in the upstream domain x > 0.
For each shock Mach number, several runs are conducted with values of ε on either
side of its critical value. We compute the maximum axial velocity in the downstream
domain. If this value is greater than zero, we consider that the flow has reversed.
In the absence of reversal, the minimum axial velocity eventually oscillates around a
constant negative value, which we take as an indication that the solution has reached
a quasi-steady state.

The results of the parametric study are recorded in table 3 and figure 4. Table 3
shows a range of Mach numbers from 1.3 to 10. The value of ε for which the
incipient breakdown occurs is given in the second column, and is the average of the
two numbers in the third column. These are the two closest values of ε we tested
which are on each side of the breakdown curve. Clearly, determining the critical value
of ε to arbitrary precision is naturally difficult and prohibitively expensive, as is the
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M1 ε Range of ε τ

1.3 4.93 (4.90, 4.95) 0.510
1.5 4.53 (4.50, 4.55) 0.406
1.7 4.18 (4.15, 4.20) 0.331
2.0 3.78 (3.75, 3.80) 0.254
2.5 3.33 (3.30, 3.35) 0.179
3.0 3.02 (3.00, 3.03) 0.135
3.5 2.73 (2.70, 2.75) 0.105
4.0 2.64 (2.63, 2.65) 0.0888
4.5 2.51 (2.50, 2.51) 0.0750
5.0 2.51 (2.50, 2.51) 0.0675
6.0 2.28 (2.25, 2.30) 0.0511
7.0 2.18 (2.15, 2.20) 0.0419
8.0 2.16 (2.15, 2.16) 0.0363
9.0 2.11 (2.10, 2.12) 0.0315
10.0 2.08 (2.05, 2.10) 0.0280

Table 3. The vortex breakdown or flow reversal values.
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Figure 4. Plot of τ1 and εM1 versus Mach number for M1 ∈ [1.5, 10]. Results based on ENO.

case with physical or numerical experiments. Several refined ENO simulations were
performed on a 200× 150 grid to confirm the results obtained on the coarser mesh.

The variation of τ = τ1 versus Mach number is shown in figure 4. As expected, the
upstream vortex strength necessary to initiate breakdown decreases with increasing
Mach number. Intuitively, this makes sense since a stronger shock leads to a stronger
deceleration of the axial flow, thus pushing the helix angle towards its critical value.
An alternative way to quantify the relationship between shock and vortex strength
is to plot the degree of nonlinearity of the shock–vortex interaction versus Mach
number (figure 4). A linear curve fit is provided by the straight line

εM1 = 1.7M1 + 4.0 (5.2)

over the range of M1 ∈ [1, 10]. Equation (5.2) could serve as a practical curve for
experimentalists and engineers.

As explained in Délery et al. (1984), the presence of the shock decelerates the mean
upstream vortex thus increasing Θ. A rule of thumb for incompressible flow is that
when Θ reaches 57◦, the vortex is susceptible to an axisymmetric breakdown. A
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Figure 5. Θ1 and Θ2 versus Mach number.

simple model of vortex breakdown was given in Cattafesta (1992) who expressed the
downstream τ2 as a function of upstream quantities to obtain

τ2

τ1

=
ux1

ux2

=
ρ21

ρ21 sin2 ψ + cos2 ψ
, (5.3)

where uxi, (i = 1, 2) are axial velocities upstream and downstream of the shock
respectively, and ψ is the angle between the shock and the shock normal (figure 1).
The density ratio across the shock is

ρ21 =
(γ + 1)M2

1 cos2 ψ

(γ − 1)M2
1 cos2 ψ + 1

. (5.4)

Cattafesta (1992) assumed that the shock was normal (ψ = 0◦) and determined a best
constant value of τ2 over the range of Mach numbers considered by Délery et al. (1984).
This yielded τ2 = 0.6, or Θ2 ≈ 30◦ which is at variance with the critical Θ2 = 57◦ for
the incompressible vortex. Assuming that the incompressible limit for Θ2 is reached
at M1 = 1 leads to the conclusion that the critical value of Θ2 at which breakdown
occurs is a function of the upstream shock Mach number. Therefore, we compute
Θ2 based on (5.3), with the values of τ1 taken from table 3 to obtain the variation
of Θ2 with M1 shown in figure 5. Note that the curve is approximately linear for
M1 < 3.0. Extrapolated to M1 = 1, the Θ2 curve predicts a critical angle Θ2 = 55◦,
consistent with incompressible results. In the limit M1 = 1, the two curves must join,
and Θ1 = Θ2 ≈ 55◦. At higher Mach numbers, the critical angle Θ2 decreases down
to 10◦. Délery et al. (1984) obtained experimental points on the reversal curve for
M1 = 1.7, 2.0, 2.3. They obtained Θ2 = 47◦, 40◦ and 30.5◦, respectively. Based on our
observations relating the effects of the pressure core and the resulting shock motion,
the discrepencies could be partially explained by an axial velocity deficit present in
the experiments, but absent from the simulations.

If ε is increased beyond the point where the vortex breaks down, the shock
eventually forms a triple point, with a more complicated structure in the recirculating
region. This regime cannot be computed by the S-F code because of the appearance
of internal shocks in the downstream domain and is now studied exclusively with the
ENO algorithm.

5.3. Shock bifurcation regime

To complete the study of flow configurations as a function of vortex strength and
shock Mach number, we perform ENO calculations for ε = 7 and 9, at M1 = 2 and 4.
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Figure 6. Schematic of flow configuration for a smooth start case at t = 11.

The physical domain extends from x = −4 to x = 8 in the axial direction, and to
r = 5 radially. Grid resolution is 450× 150. These parameter values were chosen to
ensure the occurrence of a triple point in the shock, hereafter referred to as shock
bifurcation. The triple point is expected to form at r = O(1) since the vortex core
radius is the only physical length scale in the problem. The chosen values of ε far
exceed the breakdown criterion; the flow is highly nonlinear.

We consider two different set of initial conditions: IC-a and IC-c. Recall that
IC-a refers to a vorticity profile and perturbation temperature constant across the
upstream and downstream domains, whereas IC-c has zero vorticity downstream and
an upstream vorticity multiplied by a spatial blending function (§2). The structure of
the flow is a function of the initial conditions (compare figures 7 and 10).

Contour plots of |∇ρ| and |∇p| for a M1 = 2, ε = 7 flow with IC-c at t = 11
are shown in figure 6. For comparison, density contours are shown in figure 7. The
gradient functions are normalized so that their maximum is unity. Contours in the
range [0.03,0.04] are plotted. The choice of variables is consistent with the features
visible in a typical schlieren photograph. The flow slip lines are easily identified from
the features present in the density gradient contours and absent from the pressure
gradient plot (E1, E2, and H in figure 6). The upstream pressure is minimum at
the centre of the vortex core, and increases radially to its free-stream value. As the
plane shock interacts with the vortex (at P1), the local shock Mach number is higher
in the core region than elsewhere. In other words, the shock bulges forward in the
vicinity of the axis. As the obliqueness of the primary shock (A) increases, a local
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Figure 7. Time history (a) t = 3, (b) 7, (c) 11 of density. Computed with ENO, M1 = 2, ε = 7.
Smooth start: x ∈ [2, 6]. Initial conditions IC-c.

region of supersonic flow eventually forms downstream of (A), necessarily terminated
by another shock (B) to match with the downstream subsonic flow, thus forming a
lambda shock with the so-called triple point (P2). Another weak shock (C) is evident
in the supersonic region, between shocks (A) and (B). The slip lines (E1) and (E2) are
separated by the foot of the shock (C), and they coincide with the unit-Mach-number
(sonic) contour line which emanates from the point of intersection (P1) of the primary
shock (A) with the axis of symmetry. Thus, the supersonic region is delimited by the
shocks (A), (B) and the sonic lines (E1) and (E2). As the primary shock (A) begins to
move upstream in the region near the axis, a counterclockwise azimuthal vortex ring
is formed. This vortex ring has an elliptical cross-section in the (x, r)-plane. Its major
axis slowly rotates counterclockwise, and moves steadily away from the axis r = 0.
As the flow turns supersonically within the vortex (figure 8), it is decelerated through
the shocks (B) and the triple-point structure at the tip of the normal shock (D). The
velocity vectors near the axis in figure 8 suggest a structure analogous to that of an
expanding nozzle with a shock consistent with subsonic exit conditions.

Figure 7 shows density contour plots at t = 3, 7, 11 for the IC-c, with a spatial ramp
function defined by (2.11) (α = 2, β = 6). Although we do not present the results
here, we have also simulated the abrupt start case defined by IC-b, and find that the
results are qualitatively similar to figure 7, but with a time shift. Figure 7(a) (t = 3)
shows the density prior to the formation of the triple point. The triple point forms
around t = 4. By t = 7, the triple-point shock configuration is well formed (figure 7b),
and as evidenced by figure 7(c) at t = 11, this formation seems to evolve self-similarly.
The structure of the flow in the recirculating region is presented in figure 8 in which
vector plots of the flow in the (x, r)-plane are superimposed on contours of Mach
number (based on vx and vr). The contour values range from 0 to 2.5 in increments of
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0.5. The results are shown at t = 11. As the flow begins to wrap around the subsonic
region (bounded by the sonic lines E1, E2, the shock D, and the symmetry line), it
decelerates, and becomes subsonic. At this point, the flow reaccelerates, eventually
becomes supersonic, and is eventually slowed down by passage through a normal
M1 = 2 shock (D).

To test whether the flow maintains its self-similar motion for longer time periods,
we first coarsened the grid to 100 × 50 on the same physical domain and compare
the primary shock structure to the finer grid results of figure 7. We find, as expected,
that the coarseness of the grid does not modify the characteristics of the downstream
flow (even at t = 11 where the triple point is very close to the upper boundary
of the physical domain). Therefore, we increased the size of the physical domain
to x ∈ [−9, 15], r ∈ [0, 12], and ran the simulation to t = 28. At this late stage,
the structure of the primary and secondary shocks is still the same as for t = 11,
but spatially enlarged. We track the position of P1 (the point of intersection of the
shock and the axis) and P2 (the shock triple point) and find that P2 is moving at a
constant velocity towards the free stream (figure 9). On the other hand, the speed of
P1 seems to slow down as it moves upstream. These results suggest the possibility
of a theoretical framework within which a self-similar flow emerges for particular
combinations of the parameters M1 and ε.

In contrast to results with the initial conditions IC-c, figure 10(a–c) shows the time
evolution of the density for case IC-a, where a vortex is superimposed initially on a
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(Initial conditions IC-a.)

shocked uniform flow. The evolution appears to be self-similar, somewhat like that in
figure 7, but evolves on a slower time scale. Rough velocity measurements of points
P1 and P2 between t = 7 and t = 11 indicate that for IC-a, P1 moves approximately
3.5 times slower, and P2 moves about 2.5 times slower, than the corresponding points
of case IC-c. This indicates that the shock is more oblique when the vortex interacts
with the shock abruptly. A physical explanation is offered by considering the initial
pressure jump across the shock, which for our choice of parameters is about twice
as strong in case IC-b. This indicates that case IC-b generates a shock with stronger
acceleration into the upstream domain near the symmetry axis.

Once the triple point is formed and starts to move towards the free stream, what
is its ultimate destiny? Does it continue to move at a constant velocity, or does it
slow down, and eventually stop, setting the stage for a possible steady-state solution?
We try to answer this question by appealing to dimensional analysis. The physical
parameters that govern this problem are the mean upstream velocity U1, the upstream
mean sound speed c1, the normalized vortex strength ε = Γγ1/2/(r0c

∗), the vortex
core radius r0, the spatial coordinates x∗ and c∗, and time t∗. (An asterisk denotes
dimensional quantities.) The downstream velocity field therefore takes the general
form

u′i(x
∗, y∗, t∗) = c∗f

(
M1, ε,

x∗

r0
,
y∗

r0
,
c1t
∗

r0

)
. (5.5)

In the limit of vanishing core radius, or equivalently, as t∗/(c1r0) → ∞, the velocity
field must take the self-similar form

u′i

(
x∗

t∗
,
y∗

t∗

)
= c∗f

(
M1, ε,

x∗

c1t∗
,
y∗

c1t∗

)
. (5.6)
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Figure 11. Streamwise velocity contours at t = 7 for (a) M1 = 2, ε = 7, (b) M1 = 2, ε = 9,
(c) M1 = 4, ε = 7, and (d) M1 = 4, ε = 9.

Expressions for the velocity of the triple point P2 and that of the intersection of
the primary shock and the axis (P1) are easily obtained from (5.5) by suppressing the
dependence on the spatial coordinates:

vPi = c1 f

(
M1, ε,

c1t
∗

r0

)
(5.7)

which implies a constant velocity as the third argument becomes very large. Of
course, this velocity might be zero.

Numerical results seem to indicate that there is a region of (ε,M1) parameter space
for which the function f is independent of time. However that need not be the case.
A theoretical study of this matter would prove most interesting. For example, what
is the structure of f as t → ∞, Γ → ∞, or M1 → ∞? Intuitively, one could argue
that once out of range of the upstream vortex filament, having reached a constant
velocity, the triple point would continue on forever. Given the assumption that the
point P2 moves at constant velocity, a slowdown of the triple point would increase the
obliqueness of the shock, eventually leading to its breakdown. Simulations at higher
values of ε have led to shock breakdown.

To understand better the effect of M1 and ε on the triple-point motion, we perform
and display results at M1 = 2 and 4, for ε = 7 and 9. These are presented in figure 11.
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Figure 12. Plots of (a) p, (b) ux, (c) uθ and (d) ωx at t = 11. Computed with ENO, M1 = 2, ε = 7.
Initial conditions IC-c. Smooth start: x ∈ [2, 6].

Comparing figures 11(a) (M1 = 2, ε = 7) and 11(b) (M1 = 2, ε = 9), one sees that
the velocity of the triple point P2 (figure 6) does not depend on the vortex strength.
However, P1 moves at a much faster rate as ε is increased. This is consistent with
a lower vortex core pressure, and thus a greater shock velocity near the axis. These
results also hold for M1 = 4 at the same values of ε (figure 11 c, d). On the other
hand, the velocity of both P1 and P2 increases with Mach number.

These results allow us to draw some conclusions relating to the form of (5.7). The
lack of dependence of vP2

on ε implies that

vP2
= c1 f

(
M1,

c1t
∗

r0

)
, (5.8)

which is only a function of Mach number when the velocity is independent of time
(i.e. r0 → 0). On the other hand, vP1

retains the general form (5.7).
Now consider the limit as M1 →∞ for which either c1 → 0 or u1 →∞. We consider

both cases. But first, consider the radial temperature profile. If one assumes that the
entire vortex is isentropic, (2.6) implies that

T (r) = T1 − α2(r)ε2 (5.9)

where α(r) is a positive function and α(∞) = 0. Therefore, the Mach number in the
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vortex core is higher than in the free stream. Its radial profile is

M2(r) =
U2

1

c2
1 − α2(r)γε2

(5.10)

which gives a ratio of core to free stream Mach number

M0

M1

=
1

(1− α2(0)γε2/c2
1)

1/2
. (5.11)

If U1 → ∞, M0/M1 = f(ε, c1) with ε < c1/(α(0)γ1/2) to ensure a positive core
temperature. Therefore, the Mach number and vortex strength are independent
parameters. If, on the other hand, c1 → 0, the ratio M0/M1 is still given by (5.11),
except that the maximum vortex strength decreases proportionally to c1. In this
case, one cannot take the limit M1 → ∞ while keeping ε fixed. In other words, the
aforementioned expressions for the triple points, and their ‘self-similar’ properties, are
found for increasingly weaker vortices as the Mach number is increased by decreasing
c1.

Combining the above statements, as M1 → ∞ (c1 → 0) the velocities of P1 and
P2 satisfy either vPi = U1 f(ε,U1t

∗/r0) or vPi = c1 f(ε,U1t
∗/r0). In the latter case, the

velocity drops to zero in the limit M1 →∞. We assume that ε is kept fixed as c1 → 0,
e.g. by decreasing the vortex circulation. Since ε < O(c1), one must have Γ < O(c2

1).
When M1 → ∞ (U1 → ∞), vPi = c1 f(ε, c1t

∗/r0), which implies that the triple point
has a velocity vP2

= c1 f(ε, c1t
∗/r0).

In the above discussion, we have assumed that the generic function f(· · ·) remained
finite as its various limits were taken. If the time argument becomes infinite and if
f(· · ·) remains bounded, f(· · ·) can (in principle) take an oscillatory form. This might
correspond to the periodic shedding of downstream vortices. In the event f(· · ·) is
unbounded, more general forms must be considered.

Figure 12(a)–12(d) show the solution of the IC-c case at t = 11 for p, ux, uθ , and
axial vorticity wx (M1 = 2, ε = 7). An ‘airfoil’-like structure is apparent in figure 12(b).
This region acts as a fictitious solid body around which the flow rapidly accelerates
(figure 12c). If the acceleration is sufficiently strong, the flow becomes supersonic as it
redirects itself in the upstream direction. To adjust back to the subsonic field adjacent
to the primary shock, a secondary shock is formed at the axis (D in figure 6). The
secondary shock forms an almost perfect normal Mach disk. The axial location of
this shock is approximately steady and has a Mach number of 1.34. As expected,
the axial vorticity is continuous across the shock, but has strong variations inside the
‘airfoil’. This is consistent with strong variations of vθ in this region.

6. Concluding remarks
In this paper, we have studied the interaction of a shock with a longitudinal

isentropic vortex over a wide range of Mach numbers and vortex strengths. Three
regimes are brought to light. In the first, the vortex strength ε satisfies εM < 1, in
which case linear results are valid. As ε increases, the nonlinear effects emerge. First,
a flow reversal occurs downstream of the shock, accompanied by a vortex breakdown.
This effect is primarily due to the deceleration of the mean flow across the shock,
which increases the helicity of the vortex, thus eventually leading to its breakdown.
We determined numerically ε as a function of the Mach number for which incipient
vortex breakdown occurs. When the ordinate is expressed as εM, this curve becomes
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approximately linear, particularly at the higher Mach numbers. As ε is increased
even further, the resulting obliqueness of the shock leads to a supersonic pocket in
the downstream region which readjusts to subsonic conditions through a secondary
shock emanating from the primary shock at the so-called triple point. A parameter
study in this range of vortex strengths using ENO uncovered a regime in which the
motion of the triple point and of the point of intersection of the primary shock with
the axis of symmetry looks self-similar. Further study uncovered a regime in which
the triple-point velocity, normalized by c1, was only a function of the shock Mach
number. Under extreme conditions, the shock can even break, when a supersonic
upstream flow can no longer be maintained. This is due to the strong Mach number
gradient between the vortex core and its edge. This condition is easiest to reach for
relatively weak shocks. Currently, there are no nonlinear theories to explain these
results. Theoretical developments, particularly those based on self-similar notions,
might go a long way towards understanding in more detail some of the mechanisms
described herein.
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